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ABSTRACT

Molecular recognition features, MoRFs, are short
segments within longer disordered protein regions
that bind to globular protein domains in a pro-
cess known as disorder-to-order transition. MoRFs
have been found to play a significant role in sig-
naling and regulatory processes in cells. High-
confidence computational identification of MoRFs
remains an important challenge. In this work,
we introduce MoRFchibi SYSTEM that contains
three MoRF predictors: MoRFCHiBi, a basic predic-
tor best suited as a component in other applica-
tions, MoRFCHiBi Light, ideal for high-throughput pre-
dictions and MoRFCHiBi Web, slower than the other two
but best for high accuracy predictions. Results show
that MoRFchibi SYSTEM provides more than double
the precision of other predictors. MoRFchibi SYS-
TEM is available in three different forms: as HTML
web server, RESTful web server and downloadable
software at: http://www.chibi.ubc.ca/faculty/joerg-
gsponer/gsponer-lab/software/morf chibi/

INTRODUCTION

Protein–protein interactions (PPIs) play essential rolls in
most biological processes in cells. Work in the last two
decades has revealed that intrinsically disordered protein re-
gions (IDRs) mediate many interactions as their structural
flexibility enables them to ideally fit their target domain’s
binding surfaces (1). Currently, IDR binding sites are clas-
sified under two overlapping categories: short linear motifs
(SLiMs) (2) and molecular recognition features or elements
(MoRFs) (3). SLiMs are defined as conserved, short (3–10
amino acids) linear motifs that can mediate PPIs and other
types of interactions (2). Importantly, SLiMs are not only
found in IDRs, about 20% of known SLiMs are located in
globular protein domains (2). MoRFs, on the other hand,
are strictly located within IDRs. Additionally, MoRFs un-

dergo disorder-to-order transitions upon binding to part-
ners (3–7). Based on the structure they adopt upon bind-
ing, MoRFs are sub-categorized into three basic groups: �-
MoRFs (form �-helices upon binding), �-MoRFs (form �-
strands) and �-MoRFs (form irregular structures) (8). While
most MoRFs are shorter than 25 residues, some MoRFs
are 50 or more residues long. MoRFs are found in proteins
that are involved in diverse cellular processes in all three do-
mains of life (8).

High accuracy computational identification of MoRFs
remains a significant challenge in computational biology. A
number of MoRF identification tools are currently available
including ANCHOR (9), MoRFpred (10), fMoRFpred (8),
MFSPSSMpred (11), DISOPRED3 (12), MoRFCHiBi (13)
and MoRFCHiBi Web (14). ANCHOR predicts MoRFs by
estimating interaction energies between residues. MoRF-
pred and fMoRFpred utilize SVM models (and multiple
sequence alignment for MoRFpred) in their predictions.
MFSPSSMpred and DISOPRED3 predict MoRFs based
on a SVM model with RBF kernel. MoRFCHiBi utilizes
two SVM models with sigmoid and RBF kernels to pre-
dict MoRFs relying on local physiochemical sequence prop-
erties. MoRFCHiBi Web predictions are generated by hierar-
chically incorporating scores of MoRFCHiBi with those of
IDR predictions and conservation assessments using Bayes
rule. While the prediction precisions of the first five gen-
eral MoRF predictors are about equal, MoRFCHiBi Web pro-
vides more than twice that precision. Other tools only tar-
get categories of MoRFs, including �-MoRF-Pred-I (15)
and �-MoRF-Pred-II (16) that identify �-MoRFs, and
retro-MoRF (17) that targets MoRFs with high sequence
similarity to already known MoRFs or their reversed se-
quences. Furthermore, the recently developed DisoRDP-
bind method has an extended target space that covers in-
trinsically disordered regions involved in interactions with
any type of partner including protein, RNA or DNA (18).

In this work, we introduce MoRFchibi SYSTEM, a se-
ries of MoRF predictors that serve different purposes and
users. MoRFchibi SYSTEM includes these predictors in
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three forms: as HTML server, RESTful web server and
downloadable software.

MATERIALS AND METHODS

Method

MoRFchibi SYSTEM includes three separate MoRF pre-
dictors; MoRFCHiBi, MoRFCHiBi Light and MoRFCHiBi Web
(Figure 1).

MoRFCHiBi relies on two SVMs modules to predict
MoRFs based solely on local physicochemical sequence
properties. MoRFCHiBi is the least accurate choice in MoR-
Fchibi SYSTEM. It processes more than 11 000 residues per
minute (please see the benchmarking section and (13)).

MoRFCHiBi Light utilizes Bayes rule to incorporate
MoRFCHiBi scores with disorder scores generated by
ESpritz (19). MoRFCHiBi Light is significantly more accurate
than MoRFCHiBi and it is the most accurate in targeting
longer MoRF sequences among MoRFchibi SYSTEM
predictors (MoRFs with more than 30 residues, see the
‘Benchmarking’ section). MoRFCHiBi Light processes more
than 10 500 residues per minute.

MoRFCHiBi Web predictions are the most accurate in the
MoRFchibi SYSTEM (please see the ‘Benchmarking’ sec-
tion). They are generated by supplementing MoRFCHiBi
with disorder and conservation information. As functional
elements, MoRFs are more conserved compared to other
parts of IDRs (20, 21). Therefore, an initial conservation
score (ICS) is assembled by incorporating three values
from the PSI-BLAST (22) position specific scoring matrixes
(PSSMs) using Bayes rule. Then, a MoRF conservation
score (MCS) is obtained by processing ICS with intrinsic
disorder predictions (IDP) (14). MoRFDC is then computed
by combining the MCS and intrinsic disorder predictions
using Bayes rule. And finally, Bayes rule is used again to
generate MoRFCHiBi Web from MoRFDC and MoRFCHiBi.
MoRFCHiBi Web processes ∼500 residues per minute.

Datasets

One major challenge in the development of MoRF pre-
dictors is the sparseness of experimentally verified MoRFs
that can be used for training and testing. To overcome this
problem, the authors of MoRFpred (10) implemented an
approach similar to that introduced by Mohan et al. (3),
who searched the Protein Data Bank (23) for short pep-
tides (potential MoRFs) that are in complex with longer
protein partners (presumably globular domains). Disfani et
al. (10) collected 885 sequences, each annotated by a single
6–25 residue long MoRF, and divided these sequences into
a training set, TRAINING HT and a test set, TEST HT,
such that sequences in TRAINING HT share <30% iden-
tity with those in TEST HT. TRAINING HT, contains
421 sequences with 245 984 residues, 5396 of them in
MoRFs and TEST HT, contains 464 sequences with 296
362 residues, 5779 of them in MoRFs. ( HT; for high-
throughput collection).

Although the large number of sequences in TEST HT
provides more robustness in the evaluation, this set is not
ideal because most of its MoRFs are not experimentally

validated to be disordered in isolation, it includes many ho-
mologous sequences (redundant), and each sequence is only
annotated by a single MoRF (under annotated). Therefore,
we assembled a second test set, TEST EXP53. First, we
joined four test sets that have previously been collected by
the authors of ANCHOR (9), MoRFpred (10) and DISO-
PRED3 (12). MoRFs in these sets have been experimen-
tally validated for their disordered character in isolation.
Then we filtered out sequences with more than 30% iden-
tity to TRAINING HT, as well as redundant sequences at
a 30% identity cut-off. TEST EXP53 has 53 sequences with
a total of 2432 MoRF residues that we further divided into
729 from short MoRF sections (up to 30 residues) and 1703
from long MoRF sections (more than 30 residues). Impor-
tantly, in contrast to TEST HT where each sequence is an-
notated by a single MoRF even if more may be present,
sequences in TEST EXP53 are annotated with all known
MoRFs.

We also used a third test set, TEST EXP9, to compare
the prediction quality of the MoRFchibi SYSTEM pre-
dictors with that of MFSPSSMpred and DISOPRED3.
These two SVM-RBF predictors are trained on an ex-
tended set of MoRFs including most of those found in our
TEST HT and TEST EXP53 sets. The nine sequences of
TEST EXP9, collected by the authors of DISOPRED3, are
not homologous to any sequence used in the training of
DISOPRED3, MFSPSSMpred and the predictors of MoR-
Fchibi SYSTEM. MoRFs in TEST EXP9 have been exper-
imentally validated to be disordered in the unbound state.
TEST EXP9 includes 12 MoRFs with 163 MoRF residues.

BENCHMARKING

In the following, we will first summarize the comparison
between the predictions made with MoRFchibi SYSTEM
and other available servers. Details of this comparison can
be found in Malhis et al. (14). Then, we will provide recom-
mendations for the user of MoRFchibi SYSTEM based on
results from this comparison.

Using TEST HT and TEST EXP53, we evaluated MoR-
Fchibi SYSTEM predictions and compared them with
those made by the most frequently used MoRF predictors
in the field, MoRFpred, fMoRFpred and ANCHOR (Ta-
bles 1–3). Then, we used the much smaller TEST EXP9
set to compare performances with those of MFSPSSMpred
and DISOPRED3 (Table 4). We compared the area under
the curve (AUC, in Table 1), the prediction specificity at
given sensitivities (Tables 2 and 4) and the precision as a
function of different sensitivities (Table 3).

These comparisons reveal that all three MoRFchibi SYS-
TEM predictors perform better than other methods re-
gardless of which evaluation metric is used. Importantly,
MoRFCHiBi Web generated less than half the false positive
rate for the same true positive rate at any practical thresh-
old values (see (14)). The comparison (Tables 1–3) also re-
veals that MoRFchibi SYSTEM predictors, MoRFpred,
fMoRFpred and ANCHOR identify short MoRFs better
than long ones. This may be expected as all these predictors
were trained on datasets that contain only short MoRFs.
The results on TEST EXP53 further reveal a limited con-
tribution of conservation information to the identification
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Figure 1. MoRFchibi SYSTEM. MoRFchibi SYSTEM contains predictors that use and integrate different data sources.

Table 1. AUC results

Dataset MoRFCHiBi Web MoRFCHiBi Light MoRFCHiBi fMoRFpred MoRFpred ANCHOR

TEST EXP 0.894, 0.755 0.868, 0.770 0.790, 0.679 0.662, 0.655 0.673, 0.598 0.683, 0.586
TEST HT 0.806 0.777 0.743 0.646 0.675 0.605

AUC values of MoRFchibi SYSTEM predictors compared to those of fMoRFpred, MoRFpred, and ANCHOR using TEST EXP53 and TEST HT.
We evaluated MoRF predictions for short MoRFs (up to 30 residues) separately from long MoRFs (more than 30 residues). Thus, AUC results for the
TEST EXP53 set are in the form: short, long.

Table 2. Specificity as a function of sensitivity

Specificity (short, long)

Sensitivity MoRFCHiBi Web MoRFCHiBi Light MoRFCHiBi fMoRFpred MoRFpred ANCHOR

0.2 0.990, 0.980 0.987, 0.983 0.989, 0.961 0.947, 0.924 0.941, 0.901 0.930, 0.872
0.4 0.968, 0.911 0.952, 0.914 0.935, 0.834 0.816, 0.803 0.846, 0.748 0.825, 0.690

Specificity as a function of sensitivity computed on the TEST EXP53 set (short, long) for MoRFCHiBi Web, MoRFCHiBi Light, and MoRFCHiBi compared
to that of fMoRFpred, MoRFpred, and ANCHOR.

Table 3. Precision as a function of sensitivity

Precision [Naı̈ve precisions are (0.031, 0.070)]

Sensitivity MoRFCHiBi Web MoRFCHiBi Light MoRFCHiBi fMoRFpred MoRFpred ANCHOR

0.2 0.40, 0.44 0.34, 0.47 0.39, 0.28 0.11, 0.16 0.10, 0.13 0.08, 0.10
0.4 0.29, 0.25 0.21, 0.26 0.16, 0.15 0.06, 0.13 0.08, 0.11 0.07, 0.09

Precision as a function of sensitivity computed on the TEST EXP53 set (short, long) for MoRFCHiBi Web, MoRFCHiBi Light, and MoRFCHiBi, compared
to fMoRFpred, MoRFpred, and ANCHOR.

Table 4. Comparing with MFSPSSM and DISOPRED3

Specificity

Sensitivity MoRFCHiBi Web MoRFCHiBi Light MoRFCHiBi MFSPSSMpred DISOPRED3

0.147 0.990 0.993 0.996 0.958
0.206 0.988 0.989 0.980 0.900

Specificity as a function of sensitivity computed on the TEST EXP9 set for MoRFCHiBi Web, MoRFCHiBi Light, and MoRFCHiBi compared to MFSPSSM-
pred and DISOPRED3. Sensitivity and specificity values for the latter two predictors were taken from Jones and Cozzetto (12).
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of long MoRFs. MoRFCHiBi Web, which uses conservation
information, does not perform as well in the identifica-
tion of long MoRFs as MoRFCHiBi Light, which may suggest
that the percentage of conserved residues in long MoRFs is
lower than that in short MoRFs.

For MoRF predictors that are based on machine learn-
ing, the problem of over scoring MoRFs that are very sim-
ilar to those used in its training can lead to novel MoRFs
being masked by those over scored training MoRFs. With
only one of the four sub-components of MoRFCHiBi Web di-
rectly trained on its training data (13), MoRFCHiBi Web pro-
vides high scoring consistency compared to single module
predictors. To measure this consistency, we compared the
MoRFCHiBi Web performance on its training set TRAIN-
ING HT to that on the TEST HT. Results show only a
small difference in MoRFCHiBi Web performances between
the two sets (an AUC of 0.825 for TRAINING HT versus
0.806 for TEST HT).

Based on these results and the processing speeds (see
above) of the different MoRFchibi SYSTEM predictors, the
following recommendations for users can be made:

MoRFCHiBi Web is the most accurate in MoRFchibi SYS-
TEM and outperforms previously developed predictors sig-
nificantly (significance assessed with t-Test; all P-values are
available on the server’s webpage). However, it is rather
slow because the calculation of conservation scores requires
a time consuming multiple sequence alignment step. Thus
it is most appropriate for low-throughput, high-accuracy
MoRF predictions. It is particularly strong in the search for
short (<30 residues) MoRFs.

MoRFCHiBi Light is not far behind MoRFCHiBi Web in
terms of its prediction performance. However, it is much
faster and, therefore, most appropriate for high-throughput
MoRF predictions. It shows a small advantage over
MoRFCHiBi Web in the search for long (>30) MoRFs (Ta-
bles 1–3).

MoRFCHiBi, is the least accurate among the three MoR-
Fchibi SYSTEM predictors but still superior to the other
available predictors. As its predictions are solely based on
information learned from a training set of MoRFs, it is
least likely to interfere with other parts when integrated
into multi-unit bioinformatics tools. It is also the fastest in
MoRFchibi SYSTEM.

SERVER DESCRIPTION

Input

The input for MoRFchibi SYSTEM is the primary amino
acid sequence in fasta format. To balance priorities of dif-
ferent users, requests to the HTML and the RESTful web
servers are limited to a single sequence each. However, there
is no limit on the number of sequences that can be processed
in each run of the downloadable software.

Output

The output is presented in two different forms: a download-
able text table and an interactive graphic chart. Six propen-
sity scores are generated for each residue in the query se-
quence:

(i) The three MoRFchibi SYSTEM predictions:
MoRFCHiBi Web (MCW), MoRFCHiBi Light (MCL)
and MoRFCHiBi (MC).

(ii) The intrinsic disorder prediction (IDP) based on ES-
pritz.

(iii) The initial conservation propensity score (ICS) (14).
(iv) Another MoRF prediction MoRFDC (MDC) that is

based on the combination of the disorder prediction
and the ICS (see ‘Method’ section and (14)).

Each of these scores is normalized to approximately fit a
Gaussian probability density function specified by the nor-
mal distribution N(0.5, 0.01) and is limited to the range
[0..1] as described in the article (14). In addition, the down-
loadable release includes two high-throughput options, one
only generates the MC scores, and the other generates the
MC and the MCL scores.

Usage example

The CD3E human protein P07766 has a disordered re-
gion at its C-terminus (residues 153–207) (24). This IDR
includes a MoRF that covers residues 180–202 (PDB:
1A81 B and PDB: 2ROL B). MoRF propensity scores gen-
erated by MoRFCHiBi (MC), which are based on the local
physicochemical properties of the sequence, correctly iden-
tify this MoRF region (Figure 2, green curve). However,
MoRFCHiBi scores for residues 80–117 and 142–164 are sim-
ilarly high. Combining disorder predictions and conserva-
tion information in the MoRFDC (MDC, purple curve) pro-
vides high prediction scores for the region 170–200, which
is longer than the actual MoRF. The integration of the
MoRFCHiBi and MoRFDC scores in MoRFCHiBi Web (MCW,
red curve) provides the best result with a clearly distinct
peak in the score chart between residues 180–202, which is
where the MoRF is located.

The CHiBi server overview

Once a query sequence is submitted to either the HTML or
the RESTful web servers, a job object is created and a URL
address pointing to its future results is returned to the client.
To prevent being dominated by a large number of query se-
quences from a single ‘client’ (defined below), each server
utilizes a two tiers queue structure (Figure 3). Jobs are in-
serted into the first-in first-out server queue while the job at
the top of the queue is been processed by the MoRFchibi
SYSTEM software. Each client can place up to two jobs in
the server queue, if more sequences are submitted by a single
client, extra jobs are placed temporarily in that client’s pri-
vate queue. Once a client job at the top of the server queue
is completed, it will be released from the queue and the job
at the top of that client queue (when exist) will be moved
by the job manager to the tail of the server queue. Client
queues are located on the server, thus, once the links to the
future result pages are secured, users can safely disconnect
from the server.

Two main differences exist between the HTML and the
RESTful servers: first, clients in the HTML server are
browser sessions, and they are IP addresses in the REST-
ful web server. Second, in the HTML server, client queues
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Figure 2. Graph from the HTML server for the predictions of the CD3E HUMAN protein. The propensity scores provided by MoRFCHiBi Web
(MCW), MoRFCHiBi (MC), MoRFDC (MDC) and the intrinsic disorder protein prediction (IDP) are shown in red, green, purple and blue, respectively.
MoRFCHiBi Light (MCL) and conservation (ICS) are switched off.

Figure 3. An example for the MoRFchibi SYSTEM two tiers queue structure. Eight jobs are in the server queue, two from each client. The ‘red’ client’s
job at the top of the server queue [P04777] is being processed by the MoRFchibi SYSTEM software. Jobs in the ‘completed Jobs’ section (top right) can
be accessed through their associated URL links. Once [P04777] is completed, it will be released from the server queue and the job at the top of the ‘red’
client queue [Q98XH7] will be moved by the Job Manager to the tail of the server queue.
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are not limited in size, and they are limited to 200 jobs in
the RESTful web server.

FINAL REMARKS

In this paper, we introduced MoRFchibi SYSTEM, a set
of software tools for identifying MoRF locations in amino
acid sequences. MoRFchibi SYSTEM includes three pre-
dictors: MoRFCHiBi which is best suited as a component
predictor in other applications, MoRFCHiBi Light, which was
built to process large datasets and MoRFCHiBi Web which
is best suited for high accuracy predictions in small and
medium size datasets. In addition, MoRFCHiBi Web provides
scoring consistency so that novel MoRFs are not overshad-
owed by those used in its training. MoRFchibi SYSTEM
is available in three forms: a HTML server, a RESTful web
server and a downloadable software. Compared to the beta
versions associated with (13) and (14), this full release of
MoRFchibi SYSTEM includes MoRFCHiBi Light, a REST-
ful web server with a template interface code in Python and
a downloadable software package with all three MoRFchibi
SYSTEM predictors. MoRFchibi SYSTEM is fully docu-
mented, including a tutorial video that covers the princi-
ples of its three predictors. Furthermore, a number of ex-
tra features are added (see the overview on the server’s web-
page) and most of the original C++ code has been rewrit-
ten in order to increase the processing speed, e.g. the new
MoRFCHiBi provided here has about twice the processing
speed of the beta version associated with (13).
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